A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems
نویسندگان
چکیده
There is a need for flexible iterative solvers that can solve large-scale (> 106 unknowns) nonsymmetric sparse linear systems to a small tolerance. Among flexible solvers, flexible GMRES (FGMRES) is attractive because it minimizes the residual norm over a particular subspace. In practice, FGMRES is often restarted periodically to keep memory and work requirements reasonable; however, like restarted GMRES, restarted FGMRES can suffer from stagnation. This has led us to develop a flexible variant of the Krylov linear solver GCROT (generalized conjugate residual with inner orthogonalization and outer truncation). Unlike the original GCROT algorithm, the proposed GCROT variant uses a simplified truncation strategy similar to loose GMRES (LGMRES). This modification is motivated by numerical experiments that suggest the specific subspace retained in the outer iteration of GCROT is less important than its size. The flexible GCROT variant appears to be well suited for advection-dominated problems. In particular, when applied to an adjoint problem from computational aerodynamics, the proposed GCROT variant is robust and efficient compared with several popular truncated Krylov subspace methods. Finally, a flexible version of LGMRES is easily constructed by recognizing algorithmic similarities to GCROT.
منابع مشابه
Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems
IDR(s) is one of the most efficient methods for solving large sparse nonsymmetric linear systems of equations. We present two useful extensions of IDR(s), namely a flexible variant and a multi-shift variant. The algorithms exploit the underlying Hessenberg decomposition computed by IDR(s) to generate basis vectors for the Krylov subspace. The approximate solution vectors are computed using a Qu...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملA Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems
Motivated by a recent method of Freund [3], who introduced a quasi-minimal residual (QMR) version of the CGS algorithm, we propose a QMR variant of the Bi-CGSTAB algorithm of van der Vorst, which we call QMRCGSTAB for solving nonsymmetric linear systems. The motivation for both QMR variants is to obtain smoother convergence behavior of the underlying method. We illustrate this by numerical expe...
متن کاملOptimal control of linear fuzzy time-variant controlled systems
In this paper, we study linear fuzzy time-variant optimal control systems using the generalized differentiability concept and we present the general form of optimal controls and states. Some examples are provided to illustrate our results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 32 شماره
صفحات -
تاریخ انتشار 2010